SillyPutty: Improved clustering by optimizing the silhouette width

Author:

Bombina PolinaORCID,Tally Dwayne,Abrams Zachary B.,Coombes Kevin R.ORCID

Abstract

Clustering is an important task in biomedical science, and it is widely believed that different data sets are best clustered using different algorithms. When choosing between clustering algorithms on the same data set, reseachers typically rely on global measures of quality, such as the mean silhouette width, and overlook the fine details of clustering. However, the silhouette width actually computes scores that describe how well each individual element is clustered. Inspired by this observation, we developed a novel clustering method, called SillyPutty. Unlike existing methods, SillyPutty uses the silhouette width for individual elements as a tool to optimize the mean silhouette width. This shift in perspective allows for a more granular evaluation of clustering quality, potentially addressing limitations in current methodologies. To test the SillyPutty algorithm, we first simulated a series of data sets using the Umpire R package and then used real-workd data from The Cancer Genome Atlas. Using these data sets, we compared SillyPutty to several existing algorithms using multiple metrics (Silhouette Width, Adjusted Rand Index, Entropy, Normalized Within-group Sum of Square errors, and Perfect Classification Count). Our findings revealed that SillyPutty is a valid standalone clustering method, comparable in accuracy to the best existing methods. We also found that the combination of hierarchical clustering followed by SillyPutty has the best overall performance in terms of both accuracy and speed. Availability: The SillyPutty R package can be downloaded from the Comprehensive R Archive Network (CRAN).

Funder

Center for Big Data Analytics, University of Texas at Austin

Publisher

Public Library of Science (PLoS)

Reference26 articles.

1. An R Package for Determining the Optimal Clustering Algorithm;M Sekula;Bioinformation,2017

2. Computational cluster validation in post-genomic data analysis;J Handl;Bioinformatics (Oxford, England),2005

3. Patel KMA, Thakral P. The best clustering algorithms in data mining. 2016 International Conference on Communication and Signal Processing (ICCSP). 2016. pp. 2042–2046.

4. Hierarchical Grouping to Optimize an Objective Function;JH Ward;Journal of the American Statistical Association,1963

5. MacQueen J. Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. University of California Press; 1967. pp. 281–298.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3