Abstract
Neurofibromatosis type 1 (NF1) is a complex genetic disorder that affects a range of tissues including muscle and bone. Recent preclinical and clinical studies have shown that Nf1 deficiency in muscle causes metabolic changes resulting in intramyocellular lipid accumulation and muscle weakness. These can be subsequently rescued by dietary interventions aimed at modulating lipid availability and metabolism. It was speculated that the modified diet may rescue defects in cortical bone as NF1 deficiency has been reported to affect genes involved with lipid metabolism. Bone specimens were analyzed from wild type control mice as well as Nf1Prx1-/- (limb-targeted Nf1 knockout mice) fed standard chow versus a range of modified chows hypothesized to influence lipid metabolism. Mice were fed from 4 weeks to 12 weeks of age. MicroCT analysis was performed on the cortical bone to examine standard parameters (bone volume, tissue mineral density, cortical thickness) and specific porosity measures (closed pores corresponding to osteocyte lacunae, and larger open pores). Nf1Prx1-/- bones were found to have inferior bone properties to wild type bones, with a 4-fold increase in the porosity attributed to open pores. These measures were rescued by dietary interventions including a L-carnitine + medium-chain fatty acid supplemented chow previously shown to improve muscle histology function. Histological staining visualized these changes in bone porosity. These data support the concept that lipid metabolism may have a mechanistic impact on bone porosity and quality in NF1.
Funder
Children’s Tumor Foundation Drug Discovery Initiative
Luminesce Alliance
Research Training Program (RTP) Scholarships from the Australian Government
Publisher
Public Library of Science (PLoS)