Artificial Neural Network analysis on the effect of mixed convection in triangular-shaped geometry using water-based Al2O3 nanofluid

Author:

Hudha M. N.ORCID,Hasan Md. JahidORCID,Bairagi T.ORCID,Azad A. K.ORCID,Rahman M. M.ORCID

Abstract

The objective of the study is to investigate the fluid flow and heat transfer characteristics applying Artificial Neural Networks (ANN) analysis in triangular-shaped cavities for the analysis of magnetohydrodynamics (MHD) mixed convection with varying fluid velocity of water/Al2O3 nanofluid. No study has yet been conducted on this geometric configuration incorporating ANN analysis. Therefore, this study analyzes and predicts the complex interactions among fluid flow, heat transfer, and various influencing factors using ANN analysis. The process of finite element analysis was conducted, and the obtained results have been verified by previous literature. The Levenberg-Marquardt backpropagation technique was selected for ANN. Various values of the Richardson number (0.01 ≤ Ri ≤ 5), Hartmann number (0 ≤ Ha ≤ 100), Reynolds number (50 ≤ Re ≤ 200), and solid volume fraction of the nanofluid (ϕ = 1%, 3% and 4%) have been selected. The ANN model incorporates the Gauss-Newton method and the method of damped least squares, making it suitable for tackling complex problems with a high degree of non-linearity and uncertainty. The findings have been shown through the use of streamlines, isotherm plots, Nusselt numbers, and the estimated Nusselt number obtained by ANN. Increasing the solid volume fraction improves the rate of heat transmission for all situations with varying values of Ri, Re, and Ha. The Nusselt number is greater with larger values of the Ri and Re parameters, but it lessens for higher value of Ha. Furthermore, ANN demonstrates exceptional precision, as evidenced by the Mean Squared Error and R values of 1.05200e-6 and 0.999988, respectively.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3