Segmentation of LiDAR point cloud data in urban areas using adaptive neighborhood selection technique

Author:

Chakraborty DebobrataORCID,Dey Emon Kumar

Abstract

Semantic segmentation of urban areas using Light Detection and Ranging (LiDAR) point cloud data is challenging due to the complexity, outliers, and heterogeneous nature of the input point cloud data. The machine learning-based methods for segmenting point clouds suffer from the imprecise computation of the training feature values. The most important factor that influences how precisely the feature values are computed is the neighborhood chosen by each point. This research addresses this issue and proposes a suitable adaptive neighborhood selection approach for individual points by completely considering the complex and heterogeneous nature of the input LiDAR point cloud data. The proposed approach is evaluated on high-density mobile and low-density aerial LiDAR point cloud datasets using the Random Forest machine learning classifier. In the context of performance evaluation, the proposed approach confirms the competitive performance over the state-of-the-art approaches. The computed accuracy and F1-score for the high-density Toronto and low-density Vaihingen datasets are greater than 91% and 82%, respectively.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3