Untargeted metabolomics reveals the effects of pre-analytic storage on serum metabolite profiles from healthy cats

Author:

Barko Patrick C.ORCID,Jambhekar Anisha,Swanson Kelly S.ORCID,Ridgway Marcella D.,Williams David A.

Abstract

Untargeted metabolomics investigations have characterized metabolic disturbances associated with various diseases in domestic cats. However, the pre-analytic stability of serum metabolites in the species is unknown. Our objective was to compare serum metabolomes from healthy cats stored at -20°C for up to 12 months to samples stored at -80°C. Serum samples from 8 adult, healthy cats were stored at -20°C for 6 months, -20°C for 12 months, or -80°C for 12 months. Untargeted liquid chromatography-mass spectrometry was used to generate serum metabolite profiles containing relative abundances of 733 serum metabolites that were compared among storage conditions. Unsupervised analysis with principal component analysis and hierarchical clustering of Euclidian distances revealed separation of samples from individual cats regardless of storage condition. Linear mixed-effects models identified 75 metabolites that differed significantly among storage conditions. Intraclass correlation analysis (ICC) classified most serum metabolites as having excellent (ICC ≥ 0.9; 33%) or moderate (ICC 0.75–0.89; 33%) stability, whereas 13% had poor stability (ICC < 0.5). Biochemicals that varied significantly among storage conditions and classified with poor stability included glutathione metabolites, amino acids, gamma-glutamyl amino acids, and polyunsaturated fatty acids. The benzoate; glycine, serine and threonine; tryptophan; chemical (xenobiotics); acetylated peptide, and primary bile acid sub pathways were enriched among highly stable metabolites, whereas the monohydroxy fatty acid, polyunsaturated fatty, and monoacylglycerol sub-pathways were enriched among unstable metabolites. Our findings suggest that serum metabolome profiles are representative of the cat of origin, regardless of storage condition. However, changes in specific serum metabolites, especially glutathione, gamma-glutamyl amino acid, and fatty acid metabolites were consistent with increased sample oxidation during storage at -20°C compared with -80°C. By investigating the pre-analytic stability of serum metabolites, this investigation provides valuable insights that could aid other investigators in planning and interpreting studies of serum metabolomes in cats.

Funder

Nestle-Purina PetCare Inc.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3