Lethal metabolism of Candida albicans respiratory mutants

Author:

Kane D. Lucas,Burke Brendan,Diaz Monica,Wolf Christian,Fonzi William A.ORCID

Abstract

The destructive impact of fungi in agriculture and animal and human health, coincident with increases in antifungal resistance, underscores the need for new and alternative drug targets to counteract these trends. Cellular metabolism relies on many intermediates with intrinsic toxicity and promiscuous enzymatic activity generates others. Fuller knowledge of these toxic entities and their generation may offer opportunities of antifungal development. From this perspective our observation of media-conditional lethal metabolism in respiratory mutants of the opportunistic fungal pathogen Candida albicans was of interest. C. albicans mutants defective in NADH:ubiquinone oxidoreductase (Complex I of the electron transport chain) exhibit normal growth in synthetic complete medium. In YPD medium, however, the mutants grow normally until early stationary phase whereupon a dramatic loss of viability occurs. Upwards of 90% of cells die over the subsequent four to six hours with a loss of membrane integrity. The extent of cell death was proportional to the amount of BactoPeptone, and to a lesser extent, the amount of yeast extract. YPD medium conditioned by growth of the mutant was toxic to wild-type cells indicating mutant metabolism established a toxic milieu in the media. Conditioned media contained a volatile component that contributed to toxicity, but only in the presence of a component of BactoPeptone. Fractionation experiments revealed purine nucleosides or bases as the synergistic component. GC-mass spectrometry analysis revealed acetal (1,1-diethoxyethane) as the active volatile. This previously unreported and lethal synergistic interaction of acetal and purines suggests a hitherto unrecognized toxic metabolism potentially exploitable in the search for antifungal targets.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3