Seeking safety: Movement dynamics after post-contact immobility

Author:

Franks Nigel R.,Worley Alan,Fortune George T.,Goldstein Raymond E.,Sendova-Franks Ana B.ORCID

Abstract

Post-contact immobility (PCI) is a final attempt to avoid predation. Here, for the first time, we examine the pattern of movement and immobility when antlion larvae resume activity after PCI. To simulate contact with, and escape from, a predator we dropped the larvae onto three different substrates: Paper, Shallow sand (2.3mm-deep) and Deep sand (4.6mm-deep). The Paper lining a Petri dish represented a hard surface that antlion larvae could not penetrate to hide. The Shallow sand permitted the antlions to dig but not to submerge completely whereas the Deep sand allowed them both to dig and to submerge. We tracked their paths automatically and recorded alternating immobility and movement durations over 90min. On the impenetrable substrate, antlion larvae showed super-diffusive dispersal, their movement durations became longer, their immobility durations became shorter and their instantaneous speeds increased. This is consistent with the antlions needing to leave an area of hard substrate and quickly to find somewhere to hide. On Shallow sand, antlion larvae exhibited a modest increase in movement duration, a modest decrease in immobility duration and a concomitant diffusive dispersal. This is consistent with their use of a spiral search, presumably for a suitable depth of sand, to conceal themselves. On Deep sand, the movement and immobility durations of the antlion larvae did not change and their dispersal was sub-diffusive because they were able to bury themselves. On Paper, the distribution of immobility durations had a long tail, consistent with a log-normal distribution. On Shallow and Deep sand, most of the distribution was fitted better by a power law or a log-normal. Our results suggest that PCI in antlion larvae is a disruptive event and that post-PCI movement and immobility gradually return to the pattern typical of intermittent locomotion, depending on the scope for burying and hiding in the substrate.

Funder

Engineering and Physical Sciences Research Council

Publisher

Public Library of Science (PLoS)

Reference78 articles.

1. A review of thanatosis (death feigning) as an anti-predator behaviour;RK Humphreys;Behav Ecol Sociobiol,2018

2. Is tonic immobility adaptive?;PJ Arduino;Anim Behav,1984

3. Is death-feigning adaptive? Heritable variation in fitness difference of death-feigning behaviour;T Miyatake;Proc R Soc B Biol Sci,2004

4. Behavioural ecology: Grasshoppers don’t play possum;G. Ruxton;Nature,2006

5. Thanatosis;SM Rogers;Current Biology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3