Abstract
Post-contact immobility (PCI) is a final attempt to avoid predation. Here, for the first time, we examine the pattern of movement and immobility when antlion larvae resume activity after PCI. To simulate contact with, and escape from, a predator we dropped the larvae onto three different substrates: Paper, Shallow sand (2.3mm-deep) and Deep sand (4.6mm-deep). The Paper lining a Petri dish represented a hard surface that antlion larvae could not penetrate to hide. The Shallow sand permitted the antlions to dig but not to submerge completely whereas the Deep sand allowed them both to dig and to submerge. We tracked their paths automatically and recorded alternating immobility and movement durations over 90min. On the impenetrable substrate, antlion larvae showed super-diffusive dispersal, their movement durations became longer, their immobility durations became shorter and their instantaneous speeds increased. This is consistent with the antlions needing to leave an area of hard substrate and quickly to find somewhere to hide. On Shallow sand, antlion larvae exhibited a modest increase in movement duration, a modest decrease in immobility duration and a concomitant diffusive dispersal. This is consistent with their use of a spiral search, presumably for a suitable depth of sand, to conceal themselves. On Deep sand, the movement and immobility durations of the antlion larvae did not change and their dispersal was sub-diffusive because they were able to bury themselves. On Paper, the distribution of immobility durations had a long tail, consistent with a log-normal distribution. On Shallow and Deep sand, most of the distribution was fitted better by a power law or a log-normal. Our results suggest that PCI in antlion larvae is a disruptive event and that post-PCI movement and immobility gradually return to the pattern typical of intermittent locomotion, depending on the scope for burying and hiding in the substrate.
Funder
Engineering and Physical Sciences Research Council
Publisher
Public Library of Science (PLoS)