Equations for estimating binary mixture toxicity: 3-methyl-2-butanone with a series of electrophiles

Author:

Dawson Douglas A.ORCID,Schultz Terry W.

Abstract

Mixture toxicity was determined for 32 binary combinations. One chemical was the non-reactive, non-polar narcotic 3-methyl-2-butanone (always chemical A) and the other was a potentially reactive electrophile (chemical B). Bioluminescence inhibition in Allovibrio fischeri was measured at 15-, 30-, and 45-minutes of exposure for A, B, and the mixture (MX). Concentration-response curves (CRCs) were developed for each chemical and used to develop predicted CRCs for the concentration addition (CA) and independent action (IA) mixture toxicity models. Also, MX CRCs were generated and compared with model predictions using the 45-minute data. Classification of observed mixture toxicity used three specific criteria: 1) predicted IA EC50 vs. CA EC50 values at 45-minutes, 2) consistency of 45-minute MX CRC fit to IA, CA, or otherwise at three effect levels (EC25, EC50 and EC75), and 3) the known/suspected mechanism of toxicity for chemical B. Mixture toxicity was then classified into one of seven groupings. As a result of the predicted IA EC50 being more toxic than the predicted CA EC50, IA represented the greater toxic hazard. For this reason, non-sham MXs having toxicity consistent with CA were classified as being “coincident” with CA rather than mechanistically-consistent with CA. Multiple linear regression analyses were performed to develop equations that can be used to estimate the toxicity of other 3M2B-containing binary mixtures. These equations were developed from the data for both IA and CA, at each exposure duration and effect level. Each equation had a coefficient of determination (r2) above 0.950 and a variance inflation factor <1.2. This approach can potentially reduce the need for mixture testing and is amenable to other model systems and to assays that evaluate toxicity at low effect levels.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3