Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions

Author:

Zhang Jing,Xu Yanxia,Lu Kaixing,Gong Zhengyu,Weng Zhenming,Shu Pengzhou,Chen Yujia,Jin Songheng,Li XueqinORCID

Abstract

Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of Al-sensitive (Baijinpao) and Al-resistant (Kangnaixin) rhododendron cultivars was examined by measuring gas exchange, chlorophyll fluorescence, and the modulated reflection of light at 820 nm. Under Al stress conditions, the net photosynthetic rate and stomatal conductance of the rhododendron leaves decreased, whereas the intercellular CO2 concentration increased. The Al stress treatment damaged the oxygen-evolving complex of the rhododendron seedlings, while also inhibiting electron transport on the photosystem II (PSII) donor side. In addition, the exposure to Al stress restricted the oxidation of plastocyanin (PC) and the photosystem I (PSI) reaction center (P700) and led to the re-reduction of PC+ and P700+. The comparison with Kangnaixin revealed an increase in the PSII connectivity in Baijinpao. Additionally, the donor-side electron transport efficiency was more inhibited and the overall activity of PSII, PSI, and the intersystem electron transport chain decreased more extensively in Baijinpao than in Kangnaixin. On the basis of the study findings, we concluded that Al stress adversely affects photosynthesis in rhododendron seedlings by significantly decreasing the activity of PSII and PSI. Under Al stress, Kangnaixin showed stronger tolerance compared with Baijinpao.

Funder

the National Key Research and Development Project

the National Natural Science Foundation of China

Zhejiang Provincial Team Technology Commissioner Project (Horticulture Team in Wencheng) and Ningbo Public Welfare Project

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3