White matter tracts adjacent to the human cingulate sulcus visual area (CSv)

Author:

Uesaki MaikoORCID,Furlan Michele,Smith Andrew T.,Takemura HiromasaORCID

Abstract

Human cingulate sulcus visual area (CSv) was first identified as an area that responds selectively to visual stimulation indicative of self-motion. It was later shown that the area is also sensitive to vestibular stimulation as well as to bodily motion compatible with locomotion. Understanding the anatomical connections of CSv will shed light on how CSv interacts with other parts of the brain to perform information processing related to self-motion and navigation. A previous neuroimaging study (Smith et al. 2018, Cerebral Cortex, 28, 3685–3596) used diffusion-weighted magnetic resonance imaging (dMRI) to examine the structural connectivity of CSv, and demonstrated connections between CSv and the motor and sensorimotor areas in the anterior and posterior cingulate sulcus. The present study aimed to complement this work by investigating the relationship between CSv and adjacent major white matter tracts, and to map CSv’s structural connectivity onto known white matter tracts. By re-analysing the dataset from Smith et al. (2018), we identified bundles of fibres (i.e. streamlines) from the whole-brain tractography that terminate near CSv. We then assessed to which white matter tracts those streamlines may belong based on previously established anatomical prescriptions. We found that a significant number of CSv streamlines can be categorised as part of the dorsalmost branch of the superior longitudinal fasciculus (SLF I) and the cingulum. Given current thinking about the functions of these white matter tracts, our results support the proposition that CSv provides an interface between sensory and motor systems in the context of self-motion.

Funder

Japan Society for the Promotion of Science

Nanyang Technological University

Publisher

Public Library of Science (PLoS)

Reference91 articles.

1. Direction of self-motion is perceived from optical flow;WH Warren;Nature,1988

2. Perception of self-motion from visual flow;M Lappe;Trends in Cognitive Sciences,1999

3. The optic flow field: The foundation of vision. Philosophical Transactions of the Royal Society of London;DN Lee;B, Biological Sciences,1980

4. Humans can use optic flow to estimate distance of travel;FP Redlick;Vision Research,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3