Abstract
Motivation
There exists an unexplained diverse variation within the predefined colon cancer stages using only features from either genomics or histopathological whole slide images as prognostic factors. Unraveling this variation will bring about improved staging and treatment outcomes. Hence, motivated by the advancement of Deep Neural Network (DNN) libraries and complementary factors within some genomics datasets, we aggregate atypia patterns in histopathological images with diverse carcinogenic expression from mRNA, miRNA and DNA methylation as an integrative input source into a deep neural network for colon cancer stages classification, and samples stratification into low or high-risk survival groups.
Results
The genomics-only and integrated input features return Area Under Curve–Receiver Operating Characteristic curve (AUC-ROC) of 0.97 compared with AUC-ROC of 0.78 obtained when only image features are used for the stage’s classification. A further analysis of prediction accuracy using the confusion matrix shows that the integrated features have a weakly improved accuracy of 0.08% more than the accuracy obtained with genomics features. Also, the extracted features were used to split the patients into low or high-risk survival groups. Among the 2,700 fused features, 1,836 (68%) features showed statistically significant survival probability differences in aggregating samples into either low or high between the two risk survival groups.
Availability and Implementation: https://github.com/Ogundipe-L/EDCNN
Publisher
Public Library of Science (PLoS)
Reference36 articles.
1. TransSurv: Transformer-based Survival Analysis Model Integrating Histopathological Images and Genomic Data for Colorectal Cancer;Z Lv;IEEE/ACM Trans Comput Biol Bioinform,2022
2. Deep learning with whole slide images can improve the prognostic risk stratification with stage III colorectal cancer;C Sun;Comput Methods Programs Biomed,2022
3. Exploring prognostic indicators in the pathological images of ovarian cancer based on a deep survival network;M Wu;Front Genet,2023
4. Integrative deep learning analysis improves colon adenocarcinoma patient stratification at risk for mortality;J Zhou;EBioMedicine,2023