Deep neural networks integrating genomics and histopathological images for predicting stages and survival time-to-event in colon cancer

Author:

Ogundipe Olalekan,Kurt ZeynebORCID,Woo Wai Lok

Abstract

Motivation There exists an unexplained diverse variation within the predefined colon cancer stages using only features from either genomics or histopathological whole slide images as prognostic factors. Unraveling this variation will bring about improved staging and treatment outcomes. Hence, motivated by the advancement of Deep Neural Network (DNN) libraries and complementary factors within some genomics datasets, we aggregate atypia patterns in histopathological images with diverse carcinogenic expression from mRNA, miRNA and DNA methylation as an integrative input source into a deep neural network for colon cancer stages classification, and samples stratification into low or high-risk survival groups. Results The genomics-only and integrated input features return Area Under Curve–Receiver Operating Characteristic curve (AUC-ROC) of 0.97 compared with AUC-ROC of 0.78 obtained when only image features are used for the stage’s classification. A further analysis of prediction accuracy using the confusion matrix shows that the integrated features have a weakly improved accuracy of 0.08% more than the accuracy obtained with genomics features. Also, the extracted features were used to split the patients into low or high-risk survival groups. Among the 2,700 fused features, 1,836 (68%) features showed statistically significant survival probability differences in aggregating samples into either low or high between the two risk survival groups. Availability and Implementation: https://github.com/Ogundipe-L/EDCNN

Publisher

Public Library of Science (PLoS)

Reference36 articles.

1. TransSurv: Transformer-based Survival Analysis Model Integrating Histopathological Images and Genomic Data for Colorectal Cancer;Z Lv;IEEE/ACM Trans Comput Biol Bioinform,2022

2. Deep learning with whole slide images can improve the prognostic risk stratification with stage III colorectal cancer;C Sun;Comput Methods Programs Biomed,2022

3. Exploring prognostic indicators in the pathological images of ovarian cancer based on a deep survival network;M Wu;Front Genet,2023

4. Integrative deep learning analysis improves colon adenocarcinoma patient stratification at risk for mortality;J Zhou;EBioMedicine,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3