A multi-view representation technique based on principal component analysis for enhanced short text clustering

Author:

Ahmed Majid HameedORCID,Tiun Sabrina,Omar NazliaORCID,Sani Nor SamsiahORCID

Abstract

Clustering texts together is an essential task in data mining and information retrieval, whose aim is to group unlabeled texts into meaningful clusters that facilitate extracting and understanding useful information from large volumes of textual data. However, clustering short texts (STC) is complex because they typically contain sparse, ambiguous, noisy, and lacking information. One of the challenges for STC is finding a proper representation for short text documents to generate cohesive clusters. However, typically, STC considers only a single-view representation to do clustering. The single-view representation is inefficient for representing text due to its inability to represent different aspects of the target text. In this paper, we propose the most suitable multi-view representation (MVR) (by finding the best combination of different single-view representations) to enhance STC. Our work will explore different types of MVR based on different sets of single-view representation combinations. The combination of the single-view representations is done by a fixed length concatenation via Principal Component analysis (PCA) technique. Three standard datasets (Twitter, Google News, and StackOverflow) are used to evaluate the performances of various sets of MVRs on STC. Based on experimental results, the best combination of single-view representation as an effective for STC was the 5-views MVR (a combination of BERT, GPT, TF-IDF, FastText, and GloVe). Based on that, we can conclude that MVR improves the performance of STC; however, the design for MVR requires selective single-view representations.

Funder

Ministry of Higher Education (MoHE) Malaysia

Publisher

Public Library of Science (PLoS)

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3