Possible involvement of three-stemmed pseudoknots in regulating translational initiation in human mRNAs

Author:

Huang XiaolanORCID,Du Zhihua

Abstract

RNA pseudoknots play a crucial role in various cellular functions. Established pseudoknots show significant variation in both size and structural complexity. Specifically, three-stemmed pseudoknots are characterized by an additional stem-loop embedded in their structure. Recent findings highlight these pseudoknots as bacterial riboswitches and potent stimulators for programmed ribosomal frameshifting in RNA viruses like SARS-CoV2. To investigate the possible presence of functional three-stemmed pseudoknots in human mRNAs, we employed in-house developed computational methods to detect such structures within a dataset comprising 21,780 full-length human mRNA sequences. Numerous three-stemmed pseudoknots were identified. A selected set of 14 potential instances are presented, in which the start codon of the mRNA is found in close proximity either upstream, downstream, or within the identified three-stemmed pseudoknot. These pseudoknots likely play a role in translational initiation regulation. The probability of their existence gains support from their ranking as the most stable pseudoknot identified in the entire mRNA sequence, structural conservation across homologous mRNAs, stereochemical feasibility as demonstrated by structural modeling, and classification as members of the CPK-1 pseudoknot family, which includes many well-established pseudoknots. Furthermore, in four of the mRNAs, two or three closely spaced or tandem three-stemmed pseudoknots were identified. These findings suggest the frequent occurrence of three-stemmed pseudoknots in human mRNAs. A stepwise co-transcriptional folding mechanism is proposed for the formation of a three-stemmed pseudoknot structure. Our results not only provide fresh insights into the structures and functions of pseudoknots but also unveil the potential to target pseudoknots for treating human diseases.

Publisher

Public Library of Science (PLoS)

Reference96 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3