Kalman filtering to reduce measurement noise of sample entropy: An electroencephalographic study

Author:

Zhang Nan,Zhai Yawen,Li Yan,Zhou Jiayu,Zhai MingmingORCID,Tang Chi,Xie KangningORCID

Abstract

In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor’s perspective, calculation of entropy from a period of EEG recording can be treated as physical measurement, which suffers from measurement noise. We showed the feasibility of using Kalman filtering to reduce the variance of entropy for simulated signals as well as real-world EEG recordings. In addition, we also manifested that Kalman filtering was less time-consuming than moving average, and had better performance than moving average and exponentially weighted moving average. In conclusion, we have treated entropy as a physical measure and successfully applied the conventional Kalman filtering with fixed hyperparameters. Kalman filtering is expected to be used to reduce measurement noise when continuous entropy estimation (for example anaesthesia monitoring) is essential with high accuracy and low time-consumption.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3