Laser microdissection system based on structured light modulation dual cutting mode and negative pressure adsorption collection

Author:

Zhou Bocong,Huang Caihong,Yi DingrongORCID

Abstract

Laser microdissection technology is favored by biomedical researchers for its ability to rapidly and accurately isolate target cells and tissues. However, the precision cutting capabilities of existing laser microdissection systems are hindered by limitations in overall mechanical movement accuracy, resulting in suboptimal cutting quality. Additionally, the use of current laser microdissection systems for target acquisition may lead to tissue burns and reduced acquisition rates due to inherent flaws in the capture methods. To address these challenges and achieve precise and efficient separation and capture of cellular tissues, we integrated a digital micromirror device (DMD) into the existing system optics to modulate spatial light. This allows the system to not only implement the traditional point scanning cutting method but also utilize the projection cutting method.We have successfully cut various patterns on commonly used laser microdissection materials such as PET films and mouse tissues. Under projection cutting mode, we were able to achieve precise cutting of special shapes with a diameter of 7.5 micrometers in a single pass, which improved cutting precision and efficiency. Furthermore, we employed a negative pressure adsorption method to efficiently collect target substances. This approach not only resulted in a single-pass capture rate exceeding 90% for targets of different sizes but also enabled simultaneous capture of multiple targets, overcoming the limitations of traditional single-target capture and enhancing target capture efficiency, and avoiding potential tissue damage from lasers.In summary, the integration of the digital micromirror device into laser microdissection systems significantly enhances cutting precision and efficiency, overcoming limitations of traditional systems. This advancement demonstrates the accuracy and effectiveness of laser microdissection systems in isolating and capturing biological tissues, highlighting their potential in medical applications.

Funder

Natural Science Foundation of Fujian Province

Publisher

Public Library of Science (PLoS)

Reference29 articles.

1. Ten Major Future Challenges in Single-Cell Metabolomics;B. Shrestha;Methods in molecular biology (Clifton, N.J.),2020

2. Advances in Single-Cell Printing;XH Zhou;Micromachines,2022

3. Towards high throughput and high information coverage: advanced single-cell mass spectrometric techniques;S Xu;Analytical and bioanalytical chemistry,2021

4. Progress on single cell isolation methods and instruments;CH Huang;Chinese Journal of Scientific Instrument,2020

5. Fluorescence activated cell sorting: a window on the stem cell;KW Johnson;Current pharmaceutical biotechnology,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3