Abstract
Transit deserts refer to regions with a gap in transit services, with the demand for transit exceeding the supply. This study goes beyond merely identifying transit deserts to suggest actionable solutions. Using a multi-class supervised machine learning framework, we analyzed factors leading to transit deserts, distinguishing demand by gender. Our focus was on peak-time periods. After assessing the Support Vector Machine, Decision Tree, Random Forest, and K-nearest Neighbor, we settled on the Random Forest method, supported by Diverse Counterfactual Explanation and SHapley Additive Explanation in our analysis. The ranking of feature importance in the trained Random Forest model revealed that factors such as density, design, distance to transit, diversity in the built environment, and sociodemographic characteristics significantly contribute to the classification of transit deserts. Diverse Counterfactual Explanation suggested that a reduction in population density and an increase in the proportion of green open spaces would likely facilitate the transformation of transit deserts into transit oases. SHapley Additive Explanation highlighted the differential impact of various features on each identified transit desert. Our analysis results indicate that identifying transit deserts can vary depending on whether the data is aggregated or separated by demographics. We found areas that have unique transit needs based on gender. The disparity in transit services was particularly pronounced for women. Our model pinpointed the core elements that define a transit desert. Broadly, to address transit deserts, strategies should prioritize the needs of disadvantaged groups and enhance the design and accessibility of transit in the built environment. Our research extends existing analyses of transit deserts by leveraging machine learning to develop a predictive model. We developed a machine learning-powered interactive dashboard. Integrating participatory planning approaches with the development of an interactive interface could enhance ongoing community engagement. Planning practices can evolve with AI in the loop.
Funder
National Science Foundation
UT Good System Grand Challenge
USDOT Cooperative Mobility for Competitive Megaregions University Transportation Center
Publisher
Public Library of Science (PLoS)
Reference64 articles.
1. Transit Deserts: The Gap between Demand and Supply.;J Jiao;JPT,2013
2. Planning for transportation equity in small regions: Towards meaningful performance assessment;A. Karner;Transport Policy,2016
3. From Transportation Equity to Transportation Justice: Within, Through, and Beyond the State;A Karner;Journal of Planning Literature,2020
4. The Effects of the 1930s HOLC “Redlining” Maps.;D Aaronson;American Economic Journal: Economic Policy,2021
5. A Ladder Of Citizen Participation.;SR Arnstein;Journal of the American Institute of Planners,1969