Network science and explainable AI-based life cycle management of sustainability models

Author:

Ipkovich Ádám,Czvetkó Tímea,A. Acosta Lilibeth,Lee Sanga,Nzimenyera Innocent,Sebestyén Viktor,Abonyi JánosORCID

Abstract

Model-based assessment of the potential impacts of variables on the Sustainable Development Goals (SDGs) can bring great additional information about possible policy intervention points. In the context of sustainability planning, machine learning techniques can provide data-driven solutions throughout the modeling life cycle. In a changing environment, existing models must be continuously reviewed and developed for effective decision support. Thus, we propose to use the Machine Learning Operations (MLOps) life cycle framework. A novel approach for model identification and development is introduced, which involves utilizing the Shapley value to determine the individual direct and indirect contributions of each variable towards the output, as well as network analysis to identify key drivers and support the identification and validation of possible policy intervention points. The applicability of the methods is demonstrated through a case study of the Hungarian water model developed by the Global Green Growth Institute. Based on the model exploration of the case of water efficiency and water stress (in the examined period for the SDG 6.4.1 & 6.4.2) SDG indicators, water reuse and water circularity offer a more effective intervention option than pricing and the use of internal or external renewable water resources.

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Public Library of Science (PLoS)

Reference106 articles.

1. Nations U. Transforming our world: The 2030 agenda for sustainable development. New York: United Nations, Department of Economic and Social Affairs. 2015;.

2. Three pillars of sustainability: in search of conceptual origins;B Purvis;Sustainability science,2019

3. Impact of raising awareness of Sustainable Development Goals: A survey experiment eliciting stakeholder preferences for corporate behavior;T Yamane;Journal of Cleaner Production,2021

4. Nastasi B, Markovska N, Puksec T, Duić N, Foley A.: Renewable and sustainable energy challenges to face for the achievement of Sustainable Development Goals. Elsevier.

5. Data-driven comparative analysis of national adaptation pathways for Sustainable Development Goals;V Sebestyén;Journal of Cleaner Production,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3