A novel ZVS full-bridge cascaded step-up DC-DC converter with resonant auxiliary circuit for high voltage-gain applications

Author:

Hossain M. ZakirORCID,Selvaraj Jeyraj A/L,Rahim N. A.

Abstract

High conversion ratio dc-dc converters have received significant attention in renewable energy systems, primarily due to their necessary high-gain characteristics. This research proposes a high step-up ratio full-bridge resonant cascaded (FBRC) dc-dc converter designed for use in photovoltaics (PV), fuel cells (FC), electric vehicles (EV), and other low-voltage output energy sectors to achieve high voltage gain. This converter contains a full-bridge cell with a boost input inductor, a diode-capacitor cascaded stage that replaces the transformer as a voltage multiplier and an inductor-capacitor (LC) parallel-series resonant network across the FB terminal. One of the strategic features of the converter is its high voltage step-up characteristic combined with lower duty cycle operation that limits the maximum current through the active devices, making it particularly suitable for systems that generate low output voltage. In addition, zero-voltage switching (ZVS) is achieved during the turn-off and turn-on operation of the FB switches from 25% to full load, thereby lessening the switching losses. Moreover, the diminished necessity for passive components and the decreased voltage stress on both active and passive devices lead to the use of smaller and more cost-effective components. The theoretical analysis of the proposed converter is validated using a 500 W laboratory-scale prototype wherein high-performance SiC-based MOSFETs have been utilized as switching devices. It offers reduced ripples, with input current ripple at 5% and output voltage ripple at 0.76%. When the load is 400 W and 60 V as the input voltage, the maximum efficiency is found 95.8% at 400 V output voltage. The proposed dc-dc converter, with its high voltage gain and reduced component stress, shows significant promise for application in renewable energy systems.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3