Vision SLAM algorithm for wheeled robots integrating multiple sensors

Author:

Zhou WeihuaORCID,Zhou Rougang

Abstract

Wheeled robots play a crucial role in driving the autonomy and intelligence of robotics. However, they often encounter challenges such as tracking loss and poor real-time performance in low-texture environments. In response to these issues, this research proposes a real-time localization and mapping algorithm based on the fusion of multiple features, utilizing point, line, surface, and matrix decomposition characteristics. Building upon this foundation, the algorithm integrates multiple sensors to design a vision-based real-time localization and mapping algorithm for wheeled robots. The study concludes with experimental validation on a two-wheeled robot platform. The results indicated that the multi-feature fusion algorithm achieved the highest average accuracy in both conventional indoor datasets (84.57%) and sparse-feature indoor datasets (82.37%). In indoor scenarios, the vision-based algorithm integrating multiple sensors achieved an average accuracy of 85.4% with a processing time of 64.4 ms. In outdoor scenarios, the proposed algorithm exhibited a 14.51% accuracy improvement over a vision-based algorithm without closed-loop detection. In summary, the proposed method demonstrated outstanding accuracy and real-time performance, exhibiting favorable application effects across various practical scenarios.

Publisher

Public Library of Science (PLoS)

Reference30 articles.

1. An intelligent control system for robot massaging with uncertain skin characteristics;J. Zhai;Ind. Robot,2022

2. Intelligent control method of underwater inspection robot in netcage;Y. Wei;Aquac. Res.,2022

3. Review on discrimination of hazardous gases by smart sensing technology;G. Bandewad;AIA,2023

4. Correlation filters in machine learning algorithms to select de-mographic and individual features for autism spectrum disorder diagnosis;R. S. Dornelas;JDSIS,2023

5. Experimental study on self-excited induction generator for small-scale isolated rural electricity applications;V. B. Murali Krishna;Results in Engineering,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3