The architecture of functional brain network modulated by driving under train running noise exposure

Author:

Zhao YashuaiORCID,Huang YuanchunORCID,Liu Zhigang,Zhou Yifan

Abstract

A noisy environment can considerably impact drivers’ attention and fatigue, endangering driving safety. Consequently, this study designed a simulated driving experimental scenario to analyse the effects of noise generated during urban rail transit train operation on drivers’ functional brain networks. The experiment recruited 16 participants, and the simulated driving scenario was conducted at noise levels of 50, 60, 70, and 80 dB. Functional connectivity between all electrode pairs across various frequency bands was evaluated using the weighted phase lag index (WPLI), and a brain network based on this was constructed. Graph theoretic analysis employed network global efficiency, degree, and clustering coefficient as metrics. Significant increases in the WPLI values of theta and alpha frequency bands were observed in high noise environments (70 dB, 80 dB), as well as enhanced brain synchronisation. Furthermore, concerning the topological metrics of brain networks, it was observed that the global efficiency of brain networks in theta and alpha frequency ranges, as well as the node degree and clustering coefficients, experienced substantial growth in high noise environments (70 dB, 80 dB) as opposed to 50 dB and 60 dB. This finding indicates that high-noise environments impact the reorganisation of functional brain networks, leading to a preference for network structures with improved global efficiency. Such findings may improve our understanding of the neural mechanisms of driving under noise exposure, and thus potentially reduce road accidents to some extent.

Publisher

Public Library of Science (PLoS)

Reference51 articles.

1. Quantitative causal analysis of mainline passenger train accidents in the United States;C-Y Lin;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,2020

2. The influence of sustained attention on Railway accidents;GD Edkins;Accident Analysis & Prevention,1997

3. The monitoring of vigilance in locomotive engineers;GJS Wilde;Accident Analysis & Prevention,1983

4. Assessment of Urban Railway Transit Driver Workload and Fatigue under Real Working Conditions;Y Huang;Transp Res Rec,2019

5. Road traffic noise, noise sensitivity, noise annoyance, psychological and physical health and mortality;S Stansfeld;Environ Health,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3