Feature extraction method of EEG based on wavelet packet reconstruction and deep learning model of VR motion sickness feature classification and prediction

Author:

Luo Shuhang,Ren PengORCID,Wu Jiawei,Wu Xiang,Zhang Xiao

Abstract

The surging popularity of virtual reality (VR) technology raises concerns about VR-induced motion sickness, linked to discomfort and nausea in simulated environments. Our method involves in-depth analysis of EEG data and user feedback to train a sophisticated deep learning model, utilizing an enhanced GRU network for identifying motion sickness patterns. Following comprehensive data pre-processing and feature engineering to ensure input accuracy, a deep learning model is trained using supervised and unsupervised techniques for classifying and predicting motion sickness severity. Rigorous training and validation procedures confirm the model’s robustness across diverse scenarios. Research results affirm our deep learning model’s 84.9% accuracy in classifying and predicting VR-induced motion sickness, surpassing existing models. This information is vital for improving the VR experience and advancing VR technology.

Funder

The Unveiling & Leading Project of XZHMU

Publisher

Public Library of Science (PLoS)

Reference46 articles.

1. SUN YOUNG L, BIN J, HEE JUN L, et al. 79–3: Display Resolution and Human Factors for Presence and Motion Sickness in HMD Experiences [J]. 2019, doi: 10.1002/sdtp.13131

2. Review on cybersickness in applications and visual displays [J];REBENITSCH L;Virtual Real,2016

3. Development of a Classifier to Determine Factors Causing Cybersickness in Virtual Reality Environments [J].;G-A AUGUSTO;Games for health journal,2019

4. Cybersickness: a Multisensory Integration Perspective [J];M GALLAGHER;Multisensory research,2018

5. Profiling subjective symptoms and autonomic changes associated with cybersickness [J];A M GAVGANI,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3