Changes in the analgesic mechanism of oxytocin can contribute to hyperalgesia in Parkinson’s disease model rats

Author:

Usami NayukaORCID,Maegawa HiroharuORCID,Hayashi Masayoshi,Kudo Chiho,Niwa Hitoshi

Abstract

Pain is a major non-motor symptom of Parkinson’s disease (PD). Alterations in the descending pain inhibitory system (DPIS) have been reported to trigger hyperalgesia in PD patients. However, the underlying mechanisms remain unclear. In the current study, dopaminergic nigrostriatal lesions were induced in rats by injecting 6-hydroxydopamine (6-OHDA) into their medial forebrain bundle. The neural mechanisms underlying changes in nociception in the orofacial region of 6-OHDA-lesioned rats was examined by injecting formalin into the vibrissa pad. The 6-OHDA-lesioned rats were seen to exhibit increased frequency of face-rubbing and more c-Fos immunoreactive (c-Fos-IR) cells in the trigeminal spinal subnucleus caudalis (Vc), confirming hyperalgesia. Examination of the number of c-Fos-IR cells in the DPIS nuclei [including the midbrain ventrolateral periaqueductal gray, the locus coeruleus, the nucleus raphe magnus, and paraventricular nucleus (PVN)] showed that 6-OHDA-lesioned rats exhibited a significantly lower number of c-Fos-IR cells in the magnocellular division of the PVN (mPVN) after formalin injection compared to sham-operated rats. Moreover, the 6-OHDA-lesioned rats also exhibited significantly lower plasma oxytocin (OT) concentration and percentage of oxytocin-immunoreactive (OT-IR) neurons expressing c-Fos protein in the mPVN and dorsal parvocellular division of the PVN (dpPVN), which secrete the analgesic hormone OT upon activation by nociceptive stimuli, when compared to the sham-operated rats. The effect of OT on hyperalgesia in 6-OHDA-lesioned rats was examined by injecting formalin into the vibrissa pad after intracisternal administration of OT, and the findings showed a decrease in the frequency of face rubbing and the number of c-Fos-IR cells in the Vc. In conclusion, these findings confirm presence of hyperalgesia in PD rats, potentially due to suppression of the analgesic effects of OT originating from the PVN.

Funder

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3