Predicting future grizzly bear habitat use in the Bitterroot Ecosystem under recolonization and reintroduction scenarios

Author:

Sells Sarah N.ORCID,Costello Cecily M.

Abstract

Many conservation actions must be implemented with limited data. This is especially true when planning recovery efforts for extirpated populations, such as grizzly bears (Ursus arctos) within the Bitterroot Ecosystem (BE), where strategies for reestablishing a resident population are being evaluated. Here, we applied individual-based movement models developed for a nearby grizzly bear population to predict habitat use in and near the BE, under scenarios of natural recolonization, reintroduction, and a combination. All simulations predicted that habitat use by grizzly bears would be higher in the northern half of the study area. Under the natural recolonization scenario, use was concentrated in Montana, but became more uniform across the northern BE in Idaho over time. Use was more concentrated in east-central Idaho under the reintroduction scenario. Assuming that natural recolonization continues even if bears are reintroduced, use remained widespread across the northern half of the BE and surrounding areas. Predicted habitat maps for the natural recolonization scenario aligned well with outlier and GPS collar data available for grizzly bears in the study area, with Spearman rank correlations of ≥0.93 and mean class values of ≥9.1 (where class 10 was the highest relative predicted use; each class 1–10 represented 10% of the landscape). In total, 52.4% of outlier locations and 79% of GPS collar locations were in class 10 in our predicted habitat maps for natural recolonization. Simulated grizzly bears selected habitats over a much larger landscape than the BE itself under all scenarios, including multiple-use and private lands, similar to existing populations that have expanded beyond recovery zones. This highlights the importance of recognizing and planning for the role of private lands in recovery efforts, including understanding resources needed to prevent and respond to human-grizzly bear conflict and maintain public acceptance of grizzly bears over a large landscape.

Funder

U.S. Geological Survey

Federal Aid in Wildlife Restoration

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3