Sensitivity analysis of heat and mass transfer at working face in high-temperature mine

Author:

Zhou Hang,Zhang XiangdongORCID,Zhang Shuguang

Abstract

Thermal damage from heat sources severely affects the safety of deep mine production. Heat and mass transfer between heat sources and airflow leads to the increase of the airflow temperature (AFT), moisture content of airflow (AFMC) and relative humidity of airflow (AFRH). This study aims to quantify uncertainty contributions of the working face parameters on AFT, AFMC and AFRH and find their main contributors. The flow, geometric and physical parameters are chosen as uncertainty sources. Subsequently, Sobol indices are obtained using the point-collocation non-intrusive polynomial chaos method, denoting the sensitivity of each input parameter. It was found that the inflow wind temperature and the wind velocity are two top factors influencing AFT and AFMC, while relative humidity of inflow wind and the wind velocity are two top factors influencing AFRH. In the single factor analysis, the uncertainty contributions of the inflow wind temperature on AFT and AFMC, and relative humidity of inflow wind on AFRH can exceed 0.7, which is higher than those of the wind velocity. The geometric parameters of the working face, namely the length, width and height, and ventilation time are also significant quantities influencing AFT, AFMC and AFRH. Compared to AFT and AFMC, two other significant quantities influencing AFRH are the thermal conductivity of coal and the original temperature of the rock.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Reference50 articles.

1. Heat stress in hot underground mines: a brief literature review[J];P Lazaro;Mining Metallurgy & Exploration,2020

2. Mechanism of ventilation energy dissipation in homogeneous roadway[J];YP Qin;Journal Of China Coal Society,2020

3. Heat stress in underground mines and its control measures: a systematic literature review and retrospective analysis[J];Siddhartha Roy;Mining Metallurgy & Exploration,2022

4. Application of evaporative cooling technology in transformer for mine tunnels[J];HL Shi;Processes,2021

5. Optimization of mine ventilation network feature graph[J];JZ Jia;Plos one,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3