Experimental nerve block study on painful withdrawal reflex responses in humans

Author:

Thorell OumieORCID,Mahns David,Otto Jan,Liljencrantz Jaquette,Svantesson Mats,Olausson Håkan,Nagi SaadORCID

Abstract

The nociceptive withdrawal reflex (NWR) is a protective limb withdrawal response triggered by painful stimuli, used to assess spinal nociceptive excitability. Conventionally, the NWR is understood as having two reflex responses: a short-latency Aβ-mediated response, considered tactile, and a longer-latency Aδ-mediated response, considered nociceptive. However, nociceptors with conduction velocities similar to Aβ tactile afferents have been identified in human skin. In this study, we investigated the effect of a preferential conduction block of Aβ fibers on pain perception and NWR signaling evoked by intradermal electrical stimulation in healthy participants. We recorded a total of 198 NWR responses in the intact condition, and no dual reflex responses occurred within our latency bandwidth (50–150 ms). The current required to elicit the NWR was higher than the perceptual pain threshold, indicating that NWR did not occur before pain was felt. In the block condition, when the Aβ-mediated tuning fork sensation was lost while Aδ-mediated nonpainful cooling was still detectable (albeit reduced), we observed that the reflex was abolished. Further, short-latency electrical pain intensity at pre-block thresholds was greatly reduced, with any residual pain sensation having a longer latency. Although electrical pain was unaffected at suprathreshold current, the reflex could not be evoked despite a two-fold increase in the pre-block current and a five-fold increase in the pre-block pulse duration. These observations lend support to the possible involvement of Aβ-fiber inputs in pain and reflex signaling.

Funder

Vetenskapsrådet

Knut och Alice Wallenbergs Stiftelse

ALF grants, region Ostergotland

Svenska Läkaresällskapet

Western Sydney University

Publisher

Public Library of Science (PLoS)

Reference54 articles.

1. Cognition and Pain: A Review.;T Khera;Front Psychol,2021

2. Distraction from pain: The role of selective attention and pain catastrophizing;KM Rischer;Eur J Pain,2020

3. Individual differences in pain: understanding the mosaic that makes pain personal;RB Fillingim;Pain,2017

4. Anticipation of pain-produced stress: electrophysiological study in man;JC Willer;Physiol Behav,1980

5. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing;CS Sherrington;J Physiol,1910

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3