Deep learning-based respiratory muscle segmentation as a potential imaging biomarker for respiratory function assessment

Author:

Choi InsungORCID,Choi Juwhan,Yong Hwan Seok,Yang ZepaORCID

Abstract

Respiratory diseases significantly affect respiratory function, making them a considerable contributor to global mortality. The respiratory muscles play an important role in disease prognosis; as such, quantitative analysis of the respiratory muscles is crucial to assess the status of the respiratory system and the quality of life in patients. In this study, we aimed to develop an automated approach for the segmentation and classification of three types of respiratory muscles from computed tomography (CT) images using artificial intelligence. With a dataset of approximately 600,000 thoracic CT images from 3,200 individuals, we trained the model using the Attention U-Net architecture, optimized for detailed and focused segmentation. Subsequently, we calculated the volumes and densities from the muscle masks segmented by our model and performed correlation analysis with pulmonary function test (PFT) parameters. The segmentation models for muscle tissue and respiratory muscles obtained dice scores of 0.9823 and 0.9688, respectively. The classification model, achieving a generalized dice score of 0.9900, also demonstrated high accuracy in classifying thoracic region muscle types, as evidenced by its F1 scores: 0.9793 for the pectoralis muscle, 0.9975 for the erector spinae muscle, and 0.9839 for the intercostal muscle. In the correlation analysis, the volume of the respiratory muscles showed a strong correlation with PFT parameters, suggesting that respiratory muscle volume may serve as a potential novel biomarker for respiratory function. Although muscle density showed a weaker correlation with the PFT parameters, it has a potential significance in medical research.

Funder

Ministry of Health & Welfare, Republic of Korea

Publisher

Public Library of Science (PLoS)

Reference40 articles.

1. World Health Organization. The top 10 causes of death; 2020. (https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death).

2. Lung function, respiratory symptoms, and mortality: results from the Busselton Health Study;MW Knuiman;Ann Epidemiol,1999

3. Lung function decline in COPD;C Tantucci;Int J Chron Obstruct Pulmon Dis,2012

4. Pulmonary function and health-related quality of life in a sample of long-term survivors of the acute respiratory distress syndrome;G Schelling;Intensive Care Med,2000

5. Mortality predictors in disabling chronic obstructive pulmonary disease in old age;AM Yohannes;Age Ageing,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3