Rice powder template for hausmannite Mn3O4 nanoparticles and its application to aqueous zinc ion battery

Author:

Tonu Nusrat TazeenORCID,Ahamed Parbhej,Yousuf Mohammad AbuORCID

Abstract

In this study, a simple calcination route was adopted to prepare hausmannite Mn3O4 nanoparticles using rice powder as soft bio-template. Prepared Mn3O4 was characterized by Fourier Transform Infra-Red Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray microanalysis (EDX), Powder X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Brunauer-Emmett-Teller (BET) and Solid state UV-Vis spectroscopic techniques. Mn-O stretching in tetrahedral site was confirmed by FTIR and Raman spectra. % of Mn and O content supported Mn3O4 formation. The crystallinity and grain size was found to be 68.76% and 16.43 nm, respectively; tetragonal crystal system was also cleared by XRD. TEM clarified the planes of crystal formed which supported the XRD results and BET demonstrated mesoporous nature of prepared Mn3O4 having low pore volume. Low optical band gap of 3.24 eV of prepared Mn3O4 nanoparticles indicated semiconductor property and was used as cathode material to fabricate CR-2032 coin cell of Aqueous Rechargeable Zinc Ion Battery (ARZIB). A reversible cyclic voltammogram (CV) showed good zinc ion storage performance. Low cell resistance was confirmed by Electrochemical Impedance Spectroscopy (EIS). The coin cell delivered high specific discharge capacity of 240.75 mAhg-1 at 0.1 Ag-1 current density. The coulombic efficiency was found to be 99.98%. It also delivered excellent capacity retention 94.45% and 64.81% after 300 and 1000 charge-discharge cycles, respectively. This work offers a facile and cost effective approach for preparing cathode material of ARZIBs.

Publisher

Public Library of Science (PLoS)

Reference84 articles.

1. Microfluidic-oriented assembly of Mn3O4@;C Li;C/GFF cathode with multiscale synergistic structure for high-performance aqueous zinc-ion batteries. Carbon,2023

2. The Li-ion rechargeable battery: a perspective;JB Goodenough;Journal of the American Chemical Society,2013

3. Estudio termodinámico de la lixiviación de plomo reciclado con citrato de sodio.;LC Villa;Ciencia en Desarrollo.,2018

4. Issues and opportunities facing aqueous zinc-ion batteries. Energy &;B Tang;Environmental Science,2019

5. Cathode materials challenge varied with different electrolytes in zinc batteries;N Wang;ACS Materials Letters,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3