Coupling of potential habitat models with particle tracking experiments to examine larval fish dispersal and connectivity in deep water regions

Author:

Daudén-Bengoa Gonzalo,Sheinbaum Julio,RodríguezOuterelo Javier,Herzka Sharon Z.ORCID

Abstract

Computing Lagrangian trajectories with ocean circulation models is a powerful way to infer larval dispersal pathways and connectivity. Defining release areas and timing of particles to represent larval habitat realistically is critical to obtaining representative dispersal pathways. However, it is challenging due to spatial and temporal variability in larval density. Forward-tracking particle experiments were conducted to study larval connectivity of four species (neritic or mesopelagic) in the Gulf of Mexico’s (GoM) deep-water region. A seasonal climatology coupled with predicted potential larval habitat models based on generalized additive models was used to delimit the particle dispersal origin. Two contrasting mesoscale circulation patterns were examined: (1) high Loop Current (LC) intrusion, absence of recently detached LC anticyclonic eddies (LC-ACE), and no interaction between LC-ACEs and the semi-permanent cyclonic eddy (CE) in the Bay of Campeche (BoC), and (2) limited LC intrusion, a recently detached LC-ACE, and interaction between LC-ACEs and the BoC’s CE. To simulate larval transport, virtual larvae were randomly released in the potential habitats and advected for 30 days with the velocity fields of the HYbrid Coordinate Ocean Model with hourly-resolution assimilation. Potential habitat location and size played a major role in dispersal and connectivity. A greater percentage of particles were retained in potential habitats restricted to the southern BoC, suggesting lower connectivity with other GoM regions than those encompassing most of the BoC or the central Gulf. Mesoscale feature interactions in the western GoM and BoC led to greater dispersion along the western basin. By contrast, the absence of ACE-CE interaction in the BoC led to greater retention and less connectivity between the southern and northern GoM. Under high LC intrusion, particles seeded north of the Yucatan Shelf were advected through the Florida Straits and dispersed within the GoM. Coupling potential habitat models with particle experiments can help characterize the dispersal and connectivity of fish larvae in oceanic systems.

Funder

Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California

Publisher

Public Library of Science (PLoS)

Reference102 articles.

1. Evolutionary and ecological constraints of fish spawning habitats Lorenzo;L Ciannelli;ICES J Mar Sci,2015

2. Larval Dispersal and Marine Population Connectivity;RK Cowen;Ann Rev Mar Sci,2009

3. Comparison of average larval fish vertical distributions among species exhibiting different transport pathways on the southeast United States continental shelf;JA Hare;Fish Bull,2005

4. Recent progress in understanding larval dispersal: New directions and digressions;LA Levin;Integr Comp Biol,2006

5. Connections between Campeche bank and Red Snapper populations in the Gulf of Mexico via modeled larval transport;DR Johnson;Trans Am Fish Soc,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3