Uncertainty reduction for precipitation prediction in North America

Author:

Lou DanORCID,Berghuijs Wouter R.ORCID,Ullah Waheed,Zhu BoyuanORCID,Shi Dawei,Hu Yong,Li Chao,Ullah SafiORCID,Zhou Hao,Chai Yuanfang,Yu Danyang

Abstract

Large differences in projected future annual precipitation increases in North America exists across 27 CMIP6 models under four emission scenarios. These differences partly arise from weak representations of land-atmosphere interactions. Here we demonstrate an emergent constraint relationship between annual growth rates of future precipitation and growth rates of historical temperature. The original CMIP6 projections show 0.49% (SSP126), 0.98% (SSP245), 1.45% (SSP370) and 1.92% (SSP585) increases in precipitation per decade. Combining observed warming trends, the constrained results show that the best estimates of future precipitation increases are more likely to reach 0.40–0.48%, 0.83–0.93%, 1.29–1.45% and 1.70–1.87% respectively, implying an overestimated future precipitation increases across North America. The constrained results also are narrow the corresponding uncertainties (standard deviations) by 13.8–31.1%. The overestimated precipitation growth rates also reveal an overvalued annual growth rates in temperature (6.0–13.2% or 0.12–0.37°C) and in total evaporation (4.8–14.5%) by the original models’ predictions. These findings highlight the important role of temperature for accurate climate predictions, which is important as temperature from current climate models’ simulations often still have systematic errors.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3