Wastewater-based epidemiology surveillance as an early warning system for SARS-CoV-2 in Indonesia

Author:

Murni Indah Kartika,Oktaria VickaORCID,McCarthy David T.,Supriyati EndahORCID,Nuryastuti Titik,Handley Amanda,Donato Celeste M.,Wiratama Bayu SatriaORCID,Dinari Rizka,Laksono Ida Safitri,Thobari Jarir AtORCID,Bines Julie E

Abstract

Background Wastewater-based epidemiology (WBE) surveillance has been proposed as an early warning system (EWS) for community SARS-CoV-2 transmission. However, there is limited data from low-and middle-income countries (LMICs). This study aimed to assess the ability of WBE surveillance to detect SARS-CoV-2 in formal and informal environments in Indonesia using different methods of sample collection, to compare WBE data with patterns of clinical cases of COVID-19 within the relevant communities, and to assess the WBE potential to be used as an EWS for SARS-CoV-2 outbreaks within a community. Materials and methods We conducted WBE surveillance in three districts in Yogyakarta province, Indonesia, over eleven months (27 July 2021 to 7 January 2022 [Delta wave]; 18 January to 3 June 2022 [Omicron wave]). Water samples using grab, and/or passive sampling methods and soil samples were collected either weekly or fortnightly. RNA was extracted from membrane filters from processed water samples and directly from soil. Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) was performed to detect the SARS-CoV-2 N and ORF1ab genes. Results A total of 1,582 samples were collected. Detection rates of SARS-CoV-2 in wastewater reflected the incidence of community cases, with rates of 85% at the peak to 2% at the end of the Delta wave and from 94% to 11% during the Omicron wave. A 2-week lag time was observed between the detection of SARS-CoV-2 in wastewater and increasing cases in the corresponding community. Conclusion WBE surveillance for SARS-CoV-2 in Indonesia was effective in monitoring patterns of cases of COVID-19 and served as an early warning system, predicting the increasing incidence of COVID-19 cases in the community.

Funder

Global Innovation Fund

PATH

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3