Multi-Scale Depthwise Separable Capsule Network for hyperspectral image classification

Author:

Wei LinORCID,Ran HaoxiangORCID,Yin Yuping,Yang Huihan

Abstract

Addressing the challenges in effectively extracting multi-scale features and preserving pose information during hyperspectral image (HSI) classification, a Multi-Scale Depthwise Separable Capsule Network (MDSC-Net) is proposed in this article for HSI classification. Initially, hierarchical features are extracted by MDSC-Net through the employment of parallel multi-scale convolutional kernels, while computational complexity is reduced via depthwise separable convolutions, thus reducing the overall computational load and achieving efficient feature extraction. Subsequently, to enhance the translational invariance of features and reduce the loss of pose information, features of various scales are processed in parallel by independent capsule networks, with improvements in max pooling achieved through dynamic routing. Lastly, features of different scales are concatenated and integrated through the concatenate operation, thereby facilitating precise analysis of multi-level information in the hyperspectral image classification process. Experimental comparisons demonstrate that MDSC-Net achieves average accuracies of 94%, 98%, and 99% on the Kennedy Space Center, University of Pavia, and Salinas datasets, respectively, indicating a significant performance advantage over recent HSI classification models and validating the effectiveness of the proposed model.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Public Library of Science (PLoS)

Reference39 articles.

1. Deep learning for hyperspectral image classification: An overview;S Li;IEEE Transactions on Geoscience and Remote Sensing,2023

2. A survey on hyperspectral image processing techniques for environmental monitoring.;Y Zhang;Remote Sensing of Environment,2023

3. Hyperspectral remote sensing for land cover change detection: A review and meta-analysis.;X Liu;Remote Sensing of Environment,2023

4. Hyperspectral image data analysis;D. Landgrebe;IEEE Signal Processing Magazine,2002

5. A new hyperspectral image classification method based on spatial-spectral features.;S Qu;Remote Sensing.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3