A unified classification system for HIV-1 5’ long terminal repeats

Author:

Guo Xing,Yu Dan,Liu Mengying,Li Hanping,Chen Mingyue,Wang Xinyu,Zhai Xiuli,Zhang Bohan,Wang Yanglan,Yang Caiqing,Wang Chunlei,Liu Yongjian,Han Jingwan,Wang Xiaolin,Li Jingyun,Jia Lei,Li LinORCID

Abstract

The HIV-1 provirus mainly consists of internal coding region flanked by 1 long terminal repeats (LTRs) at each terminus. The LTRs play important roles in HIV-1 reverse transcription, integration, and transcription. However, despite of the significant study advances of the internal coding regions of HIV-1 by using definite reference classification, there are no systematic and phylogenetic classifications for HIV-1 5’ LTRs, which hinders our elaboration on 5’ LTR and a better understanding of the viral origin, spread and therapy. Here, by analyzing all available resources of 5’ LTR sequences in public databases following 4 recognized principles for the reference classification, 83 representatives and 14 consensus sequences were identified as representatives of 2 groups, 6 subtypes, 6 sub-subtypes, and 9 CRFs. To test the reliability of the supplemented classification system, the constructed references were applied to identify the 5’ LTR assignment of the 22 clinical isolates in China. The results revealed that 16 out of 22 tested strains showed a consistent subtype classification with the previous LTR-independent classification system. However, 6 strains, for which recombination events within 5’ LTR were demonstrated, unexpectedly showed a different subtype classification, leading a significant change of binding sites for important transcription factors including SP1, p53, and NF-κB. The binding change of these transcriptional factors would probably affect the transcriptional activity of 5’ LTR. This study supplemented a unified classification system for HIV-1 5’ LTRs, which will facilitate HIV-1 characterization and be helpful for both basic and clinical research fields.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3