An Improved Migratory Birds Optimization Algorithm for Closed- Loop Supply Chain Network Planning in a Fuzzy Environment

Author:

Ren YangjunORCID,Chen QiongORCID,Lau Yui-yip,Dulebenets Maxim A.,Li Mengchi,Li Botang,Ching-Pong Poo MarkORCID,Zhang Pengfei

Abstract

Recycling of used products can provide substantial economic and environmental benefits for supply chain players. However, many factors associated with the design of closed-loop supply chain networks are uncertain in their nature, including demand, opening cost of facilities, capacity of opened facilities, transportation cost, and procurement cost. Therefore, this study proposes a novel fuzzy programming model for closed-loop supply chain network design, which directly relies on the fuzzy ranking method based on a credibility measure. The objective of the presented optimization model aims at minimizing the total cost of the network when selecting the facility locations and transportation routes between the nodes of the network. Based on the problem characteristics, a Migratory Birds Optimization Algorithm with a new product source encoding scheme is developed as a solution approach. The inspiration for the product source coding method originates from the label information of raw material supplier and manufacturing factories on product packaging, as well as the information of each logistics node on the delivery order. This novel encoding method aims to address the limitations of four traditional encoding methods: Prüfer number based encoding, spanning tree based encoding, forest data structure based encoding, and priority based encoding, thereby increasing the likelihood of heuristic algorithms finding the optimal solution. Thirty-five illustrative examples are developed to evaluate the proposed algorithm against the exact optimization method (LINGO) and a Genetic Algorithm, Ant Colony Optimization, Simulated Annealing, which are recognized as well-known metaheuristic algorithms. The results from extensive experiments show that the proposed algorithm is able to provide optimal and good-quality solutions within acceptable computational time even for large-scale numerical examples. The suitability of the model is confirmed through a meticulous sensitivity analysis. This analysis involves adjusting the confidence level incrementally from 50% to 100%, in 5% intervals, with respect to the model’s uncertain parameters. Consequently, it yields valuable managerial insights. The outcomes of this research are expected to provide scientific support for related supply chain enterprises and stakeholders.

Funder

major project of the Fujian Provincial Department of Education

Building a New Highland for Marine Scientific Research and Innovation in Xiamen

research platforms and projects of the Guangzhou Basic and Applied Basic Research Project

higher education institutions of the Guangdong Provincial Department of Education

the Educational Science Planning Project of the Guangdong Provincial Department of Education

the Discipline Construction Project of Guangzhou Jiao-tong University

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3