Deep learning-based stress detection for daily life use using single-channel EEG and GSR in a virtual reality interview paradigm

Author:

Kim Hun-gyeomORCID,Song Solwoong,Cho Baek HwanORCID,Jang Dong Pyo

Abstract

This research aims to establish a practical stress detection framework by integrating physiological indicators and deep learning techniques. Utilizing a virtual reality (VR) interview paradigm mirroring real-world scenarios, our focus is on classifying stress states through accessible single-channel electroencephalogram (EEG) and galvanic skin response (GSR) data. Thirty participants underwent stress-inducing VR interviews, with biosignals recorded for deep learning models. Five convolutional neural network (CNN) architectures and one Vision Transformer model, including a multiple-column structure combining EEG and GSR features, showed heightened predictive capabilities and an enhanced area under the receiver operating characteristic curve (AUROC) in stress prediction compared to single-column models. Our experimental protocol effectively elicited stress responses, observed through fluctuations in stress visual analogue scale (VAS), EEG, and GSR metrics. In the single-column architecture, ResNet-152 excelled with a GSR AUROC of 0.944 (±0.027), while the Vision Transformer performed well in EEG, achieving peak AUROC values of 0.886 (±0.069) respectively. Notably, the multiple-column structure, based on ResNet-50, achieved the highest AUROC value of 0.954 (±0.018) in stress classification. Through VR-based simulated interviews, our study induced social stress responses, leading to significant modifications in GSR and EEG measurements. Deep learning models precisely classified stress levels, with the multiple-column strategy demonstrating superiority. Additionally, discreetly placing single-channel EEG measurements behind the ear enhances the convenience and accuracy of stress detection in everyday situations.

Funder

Ministry of Science and ICT, South Korea

Publisher

Public Library of Science (PLoS)

Reference40 articles.

1. Secretory immunoglobulin A and cardiovascular reactions to mental arithmetic and cold pressor;G. Willemsen;Psychophysiology,1998

2. The promise of heart rate variability biofeedback: evidence-based applications;R. Gevirtz;Biofeedback,2013

3. Activity-aware mental stress detection using physiological sensors;F.-T. Sun;in Mobile Computing, Applications, and Services: Second International ICST Conference, MobiCASE 2010, Santa Clara, CA, USA,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3