Machine learning for prediction of acute kidney injury in patients diagnosed with sepsis in critical care

Author:

Shi Jianshan,Han Huirui,Chen Song,Liu WeiORCID,Li Yanfen

Abstract

Background and objective Acute Kidney Injury (AKI) is a common and severe complication in patients diagnosed with sepsis. It is associated with higher mortality rates, prolonged hospital stays, increased utilization of medical resources, and financial burden on patients’ families. This study aimed to establish and validate predictive models using machine learning algorithms to accurately predict the occurrence of AKI in patients diagnosed with sepsis. Methods This retrospective study utilized real observational data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. It included patients aged 18 to 90 years diagnosed with sepsis who were admitted to the ICU for the first time and had hospital stays exceeding 48 hours. Predictive models, employing various machine learning algorithms including Light Gradient Boosting Machine (LightGBM), EXtreme Gradient Boosting (XGBoost), Random Forest (RF), Decision Tree (DT), Artificial Neural Network (ANN), Support Vector Machine (SVM), and Logistic Regression (LR), were developed. The dataset was randomly divided into training and test sets at a ratio of 4:1. Results A total of 10,575 sepsis patients were included in the analysis, of whom 8,575 (81.1%) developed AKI during hospitalization. A selection of 47 variables was utilized for model construction. The models derived from LightGBM, XGBoost, RF, DT, ANN, SVM, and LR achieved AUCs of 0.801, 0.773, 0.772, 0.737, 0.720, 0.765, and 0.776, respectively. Among these models, LightGBM demonstrated the most superior predictive performance. Conclusions These machine learning models offer valuable predictive capabilities for identifying AKI in patients diagnosed with sepsis. The LightGBM model, with its superior predictive capability, could aid clinicians in early identification of high-risk patients.

Funder

National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of China

Youth Cultivation Foundation of The First Affiliated Hospital of Hainan Medical College

Publisher

Public Library of Science (PLoS)

Reference35 articles.

1. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study;KE Rudd;The Lancet,2020

2. Association between diastolic blood pressure during the first 24 h and 28-day mortality in patients with septic shock: a retrospective observational study;Z Gao;European Journal of Medical Research,2023

3. A novel risk-predicted nomogram for sepsis associated-acute kidney injury among critically ill patients;S Yang;BMC nephrology,2021

4. A “generalized wayfinding” paradigm for improving AKI understanding and classification: insights from the Dutch registries;J Montomoli;Minerva Anestesiologica,2023

5. Acute kidney injury in sepsis;R Bellomo;Intensive care medicine,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3