SPOP expression is associated with tumor-infiltrating lymphocytes in pancreatic cancer

Author:

Yang Xiao Juan,Xu Yong Feng,Zhu QingORCID

Abstract

Background Speckle Type POZ Protein (SPOP), despite its tumor type-dependent role in tumorigenesis, primarily as a tumor suppressor gene is associated with a variety of different cancers. However, its function in pancreatic cancer remains uncertain. Methods SPOP expression and the association between its expression and patient prognosis and immune function were evaluated using The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), The Tumor Immune Estimation Resource 2.0 (TIMER2.0) database, cBioportal, and various bioinformatic databases. Enrichment analysis of SPOP and the association between SPOP expression with clinical stage and grade were analyzed using the R software package. Then immunohistochemistry (IHC) was used to estimate the correlation between SPOP and tumor-infiltrating lymphocytes (TILs) in patients with pancreatic cancer. Results As part of our study, we assessed that SPOP was anomalously expressed in kinds of cancers, associated with clinical stage and outcomes. Meanwhile, SPOP also played a crucial role in the tumor microenvironment (TME). The expression level of SPOP was significantly correlated to tumor-infiltrating immune cells (TICs) in pancreatic cancer. Conclusions Our study uncovered the potential corrections in SPOP with TICs, suggesting that SPOP may act as a biomarker for immunotherapy in pancreatic cancer.

Publisher

Public Library of Science (PLoS)

Reference40 articles.

1. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism;I Elia;Nat. Metab,2021

2. Hallmarks of Cancer: New Dimensions. Cancer;D. Hanahan;Discov,2022

3. Microenvironmental regulation of tumor progression and metastasis;DF Quail;Nat. Med,2013

4. Inflammation and Cancer: Triggers, Mechanisms, and Consequences;FR Greten;Immunity,2019

5. Next generation of immune checkpoint inhibitors and beyond;JA Marin-Acevedo;J. Hematol. Oncol,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3