Catch yield and selectivity of a modified scallop dredge to reduce seabed impact

Author:

Fenton MairiORCID,Szostek Claire L.,Delargy AdamORCID,Johnson Andrew F.,Kaiser Michel J.,Hinz Hilmar,Hold NatalieORCID,Sciberras Marija

Abstract

Global scallop fisheries are economically important but are associated with environmental impacts to seabed communities resulting from the direct physical contact of the fishing gear with the seabed. Gear modifications attempting to reduce this contact must be economically feasible such that the catch numbers for the target species is maintained or increased. This study investigated the outcome of reducing seabed contact on retained catch of scallops and bycatch by the addition of skids to the bottom of the collecting bag of scallop dredges. We used a paired control experimental design to investigate the impact of the gear modification in different habitat types. The modified skid dredge generally caught more marketable scallops per unit area fished compared with the standard dredge (+5%). However, the skid dredge also retained more bycatch (+11%) and more undersize scallops (+16%). The performance of the two dredges was habitat specific which indicates the importance of adjusting management measures in relation to habitat type. To realize the potential environmental benefits associated with the improvement in catchability of this gear modification, further gear modification is required to reduce the catch of undersize scallops and bycatch. Furthermore we advocate that technical gear innovations in scallop dredging need to be part of a comprehensive and effective fisheries management system.

Funder

Centre for Environment, Fisheries and Aquaculture Science

Publisher

Public Library of Science (PLoS)

Reference47 articles.

1. Chapter 14—Quantifying and Managing the Ecosystem Effects of Scallop Dredge Fisheries.;B Stewart;Developments in Aquaculture and Fisheries Science,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3