The effects of gases from food waste on human health: A systematic review

Author:

Rudziak PaulinaORCID,Batung Evans,Luginaah IsaacORCID

Abstract

Food waste is a routine and increasingly growing global concern that has drawn significant attention from policymakers, climate change activists and health practitioners. Amid the plurality of discourses on food waste-health linkages, however, the health risks from food waste induced emissions have remained under explored. This lack of evidence is partly because of the lack of complete understanding of the effects of food waste emissions from household food waste on human health either directly through physiological mechanisms or indirectly through environmental exposure effects. Thus, this systematic review contributes to the literature by synthesizing available evidence to highlight gaps and offers a comprehensive baseline inventory of food waste emissions and their associated impacts on human health to support public health decision-making. Four database searches: Web of Science, OVID(Medline), EMBASE, and Scopus, were searched from inception to 3 May 2023. Pairs of reviewers screened 2189 potentially eligible studies that addressed food waste emissions from consumers and how the emissions related to human health. Following PRISMA guidelines, 26 articles were eligible for data extraction for the systematic review. Findings indicate that emissions from food waste, such as hydrogen sulphide, ammonia, and volatile organic carbons, can affect human endocrine, respiratory, nervous, and olfactory systems. The severity of the human health effects depends on the gaseous concentration, but range from mild lung irritation to cancer and death. This study recommends emission capture technologies, food diversion programs, and biogas technologies to reduce food waste emissions.

Funder

Western University

Publisher

Public Library of Science (PLoS)

Reference52 articles.

1. FAO and the situation of food security and nutrition in the world;MC Boliko;Journal of Nutritional Science and Vitaminology,2019

2. Life-cycle greenhouse gas emissions and human health trade-offs of organic waste management strategies;SL Nordahl;Environmental Science and Technology,2020

3. Hydrogen sulfide gas poisoning in fish garbage room: A report of a fisherman;S Sheikh;Journal of Pakistan Medical Association,2017

4. The relationship of odor concentration and the critical components emitted from food waste composting plants;C-J Tsai;Atmospheric Environment,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3