A mathematical model of COVID-19 with multiple variants of the virus under optimal control in Ghana

Author:

Kim Young Rock,Min YounghoORCID,Okogun-Odompley Joy NanaORCID

Abstract

In this paper, we suggest a mathematical model of COVID-19 with multiple variants of the virus under optimal control. Mathematical modeling has been used to gain deeper insights into the transmission of COVID-19, and various prevention and control strategies have been implemented to mitigate its spread. Our model is a SEIR-based model for multi-strains of COVID-19 with 7 compartments. We also consider the circulatory structure to account for the termination of immunity for COVID-19. The model is established in terms of the positivity and boundedness of the solution and the existence of equilibrium points, and the local stability of the solution. As a result of fitting data of COVID-19 in Ghana to the model, the basic reproduction number of the original virus and Delta variant was estimated to be 1.9396, and the basic reproduction number of the Omicron variant was estimated to be 3.4905, which is 1.8 times larger than that. We observe that even small differences in the incubation and recovery periods of two strains with the same initial transmission rate resulted in large differences in the number of infected individuals. In the case of COVID-19, infections caused by the Omicron variant occur 1.5 to 10 times more than those caused by the original virus. In terms of the optimal control strategy, we formulate three control strategies focusing on social distancing, vaccination, and testing-treatment. We have developed an optimal control model for the three strategies outlined above for the multi-strain model using the Pontryagin’s Maximum Principle. Through numerical simulations, we analyze three optimal control strategies for each strain and also consider combinations of the two control strategies. As a result of the simulation, all control strategies are effective in reducing disease spread, in particular, vaccination strategies are more effective than the other two control strategies. In addition the combination of the two strategies also reduces the number of infected individuals by 1/10 compared to implementing one strategy, even when mild levels are implemented. Finally, we show that if the testing-treatment strategy is not properly implemented, the number of asymptomatic and unidentified infections may surge. These results could help guide the level of government intervention and prevention strategy formulation.

Funder

Hankuk University of Foreign Studies

Publisher

Public Library of Science (PLoS)

Reference50 articles.

1. Wuhan to world: The COVID-19 pandemic;A. Kumar;Frontiers in cellular and infection microbiology,2021

2. WHO declares COVID-19 a pandemic;D. Cucinotta;Acta bio medica: Atenei parmensis,2020

3. Responding to the COVID-19 pandemic in Ghana;E. Kenu;Ghana medical journal,2020

4. Worldometers. Reported Cases and Deaths by Country or Territory. Available from: https://www.worldometers.info/coronavirus/; [accessed December 4, 2022].

5. Investigating the impact of social awareness and rapid test on a covid-19 transmission model;M. A. Balya;Communication in Biomathematical Sciences,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3