Triple-0: Zero-shot denoising and dereverberation on an end-to-end frozen anechoic speech separation network

Author:

Gul Sania,Khan Muhammad SalmanORCID,Ur-Rehman Ata

Abstract

Speech enhancement is crucial both for human and machine listening applications. Over the last decade, the use of deep learning for speech enhancement has resulted in tremendous improvement over the classical signal processing and machine learning methods. However, training a deep neural network is not only time-consuming; it also requires extensive computational resources and a large training dataset. Transfer learning, i.e. using a pretrained network for a new task, comes to the rescue by reducing the amount of training time, computational resources, and the required dataset, but the network still needs to be fine-tuned for the new task. This paper presents a novel method of speech denoising and dereverberation (SD&D) on an end-to-end frozen binaural anechoic speech separation network. The frozen network requires neither any architectural change nor any fine-tuning for the new task, as is usually required for transfer learning. The interaural cues of a source placed inside noisy and echoic surroundings are given as input to this pretrained network to extract the target speech from noise and reverberation. Although the pretrained model used in this paper has never seen noisy reverberant conditions during its training, it performs satisfactorily for zero-shot testing (ZST) under these conditions. It is because the pretrained model used here has been trained on the direct-path interaural cues of an active source and so it can recognize them even in the presence of echoes and noise. ZST on the same dataset on which the pretrained network was trained (homo-corpus) for the unseen class of interference, has shown considerable improvement over the weighted prediction error (WPE) algorithm in terms of four objective speech quality and intelligibility metrics. Also, the proposed model offers similar performance provided by a deep learning SD&D algorithm for this dataset under varying conditions of noise and reverberations. Similarly, ZST on a different dataset has provided an improvement in intelligibility and almost equivalent quality as provided by the WPE algorithm.

Funder

Higher Education Commision, Pakistan

Publisher

Public Library of Science (PLoS)

Reference85 articles.

1. Kellermann W. Echoes and noise with seamless acoustic man-machine interfaces—the challenge persists. In Proc. IWAENC 1999 (pp. 27–30).

2. A detailed study on the effects of noise on speech intelligibility;F Dubbelboer;The Journal of the Acoustical Society of America,2007

3. Nakazawa K, Kondo K. De-reverberation using CNN for Non-Reference Reverberant Speech Intelligibility Estimation. Universitätsbibliothek der RWTH Aachen; 2019 Sep.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3