Using Museum collections to assess the impact of industrialization on mussel (Mytilus edulis) calcification

Author:

Melbourne Leanne A.ORCID,Goodkin Nathalie F.

Abstract

Mytilus edulis is a commercially and ecologically important species found along the east coast of the United States. Ecologically, M. edulis improves water quality through filtration feeding and provides habitat formation and coastal protection through reef formation. Like many marine calcifiers, ocean warming, and acidification are a growing threat to these organisms—impacting their morphology and function. Museum collections are useful in assessing long-term environmental impacts on organisms in a natural multi-stressor environment, where acclimation and adaptation can be considered. Using the American Museum of Natural History collections ranging from the early 1900s until now, we show that shell porosity changes through time. Shells collected today are significantly more porous than shells collected in the 1960s and, at some sites, than shells collected from the early 1900s. The disparity between porosity changes matches well with the warming that occurred over the last 130 years in the north Atlantic suggesting that warming is causing porosity changes. However, more work is required to discern local environmental impacts and to fully identify porosity drivers. Since, porosity is known to affect structural integrity, porosity increasing through time could have negative consequences for mussel reef structural integrity and hence habitat formation and storm defenses.

Funder

Kathyrn W. Davis Postdoctoral Fellowship

Division of Graduate Education

U.S. Department of Education

Publisher

Public Library of Science (PLoS)

Reference65 articles.

1. Population and community ecology of Mytilus;R Seed;Developments in aquaculture and fisheries science,1992

2. Mussels and their role in structuring rocky shore communities;T. Suchanek;The Ecology of Rocky Coastes,1985

3. The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons.;M Byrne;Conserv Physiol.,2019

4. Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis).;F Gazeau;Frontiers in Marine Science,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3