Design of image intelligent focusing system based on improved SMD function and RBF algorithm

Author:

Deng Qianwei,Wong Chee-Onn,Sitharan Roopesh,Meng XiangbinORCID

Abstract

The utilization of digital statistical processes in images and videos can effectively tackle numerous challenges encountered in optical sensors. This research endeavors to overcome the limitations inherent in traditional focus models, particularly their inadequate accuracy. It aims to bolster the precision of real-time perception and dynamic control by employing enhanced data fusion methodologies. The ultimate objective is to facilitate information services that enable seamless interaction and profound integration between computational and physical processes within an open environment. To achieve this, an enhanced sum-modulus difference (SMD) evaluation function has been proposed. This innovation is founded on the concept of threshold value evaluation, aimed at rectifying the accuracy shortcomings of traditional focusing models. Through the computation of each gray value after threshold segmentation, the method identifies the most suitable threshold for image segmentation. This identified threshold is then applied to the focus search strategy employing the radial basis function (RBF) algorithm. Furthermore, an intelligent focusing system has been developed on the Zynq development platform, encompassing both hardware design and software program development. The test results affirm that the focusing model based on the improved SMD evaluation function rapidly identifies the peak point of the gray variance curve, ascertains the optimal focal plane position, and notably enhances the sensitivity of the focusing model.

Publisher

Public Library of Science (PLoS)

Reference40 articles.

1. Review of image classification algorithms based on convolutional neural networks;L. Chen;Remote Sensing,2021

2. Segmentation of lung airways based on deep learning methods;W. Tan;IET Image Processing,2022

3. Passive autofocusing system for a thermal camera;R. Ali;IEEE Access,2020

4. A secure information transmission protocol for healthcare cyber based on quantum image expansion and Grover search algorithm;Z Qu;IEEE Transactions on Network Science and Engineering,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3