A Retinex-based network for image enhancement in low-light environments

Author:

Wu Ji,Ding Bing,Zhang Beining,Ding JieORCID

Abstract

Most of the existing low-light image enhancement methods suffer from the problems of detail loss, color distortion and excessive noise. To address the above-mentioned issues, this paper proposes a neural network-based low-light image enhancement network. The network is divided into three parts: decomposition network, reflection component denoising network, and illumination component enhancement network. In the decomposition network, the input image is decomposed into a reflection image and an illumination image. In the reflection component denoising network, the Unet3+ network improved by fusion CA attention is adopted to denoise the reflection image. In the illumination component enhancement network, the adaptive mapping curve is adopted to enhance the illumination image iteratively. Finally, the processed illumination and reflection images are fused based on Retinex theory to obtain the final enhanced image. The experimental results show that the proposed network achieves excellent visual effects in subjective evaluation. Additionally, it shows a significant improvement in objective evaluation metrics, including PSNR, SSIM, NIQE, and so on, when compared to the results in several public datasets.

Funder

National Key Research and Development Program of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

Public Library of Science (PLoS)

Reference24 articles.

1. Autonomous robot navigation using Retinex algorithm for multiscale image adaptability in low-light environment.;S Wen;Intelligent Service Robotics,2019

2. Low light image enhancement with adaptive sigmoid transfer function;K Srinivas;IET Image Processing,2020

3. Adaptive histogram equalization and its variations;SM Pizer;Computer vision, graphics, and image processing,1987

4. The retinex theory of color vision;EH Land;Scientific american,1977

5. Properties and performance of a center/surround retinex;DJ Jobson;IEEE transactions on image processing,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3