Development of low-cost micro-fabrication procedures for planar micro-thermoelectric generators based on thin-film technology for energy harvesting applications

Author:

Abdelkader Sobhy M.,Nayebare DonartORCID,Megahed Tamer F.,El-Bab Ahmed M. R. Fath,Ismeil Mohamed A.ORCID,Abdel-Rahim OmarORCID

Abstract

With the rapid proliferation of portable and wearable electronics, energy autonomy through efficient energy harvesting has become paramount. Thermoelectric generators (TEGs) stand out as promising candidates due to their silent operation, high reliability, and maintenance-free nature. This paper presents the design, fabrication, and analysis of a micro-scale TEG for powering such devices. A planar configuration was employed for its inherent miniaturization advantages. Finite element analysis using ANSYS reveals that a double-layer device under a 50 K temperature gradient generates an impressive open-circuit voltage of 1417 mV and a power output of 2.4 μW, significantly exceeding its single-layer counterpart (226 mV, 0.12 μW). Validation against the analytical model results yields errors within 2.44% and 2.03% for voltage and power, respectively. Furthermore, a single-layer prototype fabricated using paper shadow masks and sputtering deposition exhibits a voltage of 131 mV for a 50 K temperature difference, thus confirming the feasibility of the proposed design. This work establishes a foundation for developing highly efficient micro-TEGs for powering next-generation portable and wearable electronics.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

Public Library of Science (PLoS)

Reference28 articles.

1. Low-temperature co-fired ceramic-based thermoelectric generator with cylindrical grooves for harvesting waste heat from power circuits;N. Jaziri;Appl Therm Eng,2021

2. Materials and Wearable Devices for Autonomous Monitoring of Physiological Markers;W. Wu,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3