Elevated heterotrophic capacity as a strategy for Mediterranean corals to cope with low pH at CO2 vents

Author:

Hulver Ann MarieORCID,Carbonne Chloé,Teixidó Nuria,Comeau Steeve,Kemp Dustin W.,Keister Elise F.,Gattuso Jean-Pierre,Grottoli Andréa G.ORCID

Abstract

The global increase in anthropogenic CO2 is leading to ocean warming and acidification, which is threatening corals. In Ischia, Italy, two species of Mediterranean scleractinian corals–the symbiotic Cladocora caespitosa and the asymbiotic Astroides calycularis–were collected from ambient pH sites (average pHT = 8.05) and adjacent CO2 vent sites (average pHT = 7.8) to evaluate their response to ocean acidification. Coral colonies from both sites were reared in a laboratory setting for six months at present day pH (pHT ~ 8.08) or low pH (pHT ~7.72). Previous work showed that these corals were tolerant of low pH and maintained positive calcification rates throughout the experiment. We hypothesized that these corals cope with low pH by increasing their heterotrophic capacity (i.e., feeding and/or proportion of heterotrophically derived compounds incorporated in their tissues), irrespective of site of origin, which was quantified indirectly by measuring δ13C, δ15N, and sterols. To further characterize coral health, we quantified energy reserves by measuring biomass, total lipids, and lipid classes. Additional analysis for C. caespitosa included carbohydrates (an energy reserve) and chlorophyll a (an indicator of photosynthetic capacity). Isotopic evidence shows that ambient-sourced Mediterranean corals, of both species, decreased heterotrophy in response to six months of low pH. Despite maintaining energy reserves, lower net photosynthesis (C. caespitosa) and a trend of declining calcification (A. calycularis) suggest a long-term cost to low heterotrophy under ocean acidification conditions. Conversely, vent-sourced corals maintained moderate (C. caespitosa) or high (A. calycularis) heterotrophic capacity and increased photosynthesis rates (C. caespitosa) in response to six months at low pH, allowing them to sustain themselves physiologically. Provided there is sufficient zooplankton and/or organic matter to meet their heterotrophic needs, vent-sourced corals are more likely to persist this century and potentially be a source for new corals in the Mediterranean.

Funder

National Science Foundation

Agence Nationale de la Recherche

Ohio State University - Office of International Affairs

Publisher

Public Library of Science (PLoS)

Reference79 articles.

1. Gulev SK, Thorne PW, Ahn J, Dentener FJ, Comingues CM, Gerland S, et al. Changing State of the Climate System. Climate Change 2021: The Physical Science Basis Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021.

2. Global Carbon Budget 2023;P Friedlingstein;Earth System Science Data,2023

3. Ocean acidification: The other CO2 problem;SC Doney;Annual Review of Marine Science,2009

4. Environmental Limits to Coral Reef Development: Where Do We Draw the Line?;JA Kleypas;American Zoologist,1999

5. Global Surface Ocean Acidification Indicators From 1750 to 2100;L-Q Jiang;Journal of Advances in Modeling Earth Systems,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3