Vulnerability extraction and prediction method based on improved information gain algorithm

Author:

Yang PengORCID,Wang Xiaofeng

Abstract

More and more attention has been paid to computer security, and its vulnerabilities urgently need more sensitive solutions. Due to the incomplete data of most vulnerability libraries, it is difficult to obtain pre-permission and post-permission of vulnerabilities, and construct vulnerability exploitation chains, so it cannot to respond to vulnerabilities in time. Therefore, a vulnerability extraction and prediction method based on improved information gain algorithm is proposed. Considering the accuracy and response speed of deep neural network, deep neural network is adopted as the basic framework. The Dropout method effectively reduces overfitting in the case of incomplete data, thus improving the ability to extract and predict vulnerabilities. These experiments confirmed that the excellent F1 and Recall of the improved method reached 0.972 and 0.968, respectively. Compared to the function fingerprints vulnerability detection method and K-nearest neighbor algorithm, the convergence is better. Its response time is 0.12 seconds, which is excellent. To ensure the reliability and validity of the proposed method in the face of missing data, the reliability and validity of Mask test are verified. The false negative rate was 0.3% and the false positive rate was 0.6%. The prediction accuracy of this method for existing permissions reached 97.9%, and it can adapt to the development of permissions more actively, so as to deal with practical challenges. In this way, companies can detect and discover vulnerabilities earlier. In security repair, this method can effectively improve the repair speed and reduce the response time. The prediction accuracy of post-existence permission reaches 96.8%, indicating that this method can significantly improve the speed and efficiency of vulnerability response, and strengthen the understanding and construction of vulnerability exploitation chain. The prediction of the posterior permission can reduce the attack surface of the vulnerability, thus reducing the risk of breach, speeding up the detection of the vulnerability, and ensuring the timely implementation of security measures. This model can be applied to public network security and application security scenarios in the field of computer security, as well as personal computer security and enterprise cloud server security. In addition, the model can also be used to analyze attack paths and security gaps after security accidents. However, the prediction of post-permissions is susceptible to dynamic environments and relies heavily on the updated guidance of security policy rules. This method can improve the accuracy of vulnerability extraction and prediction, quickly identify and respond to security vulnerabilities, shorten the window period of vulnerability exploitation, effectively reduce security risks, and improve the overall network security defense capability. Through the application of this model, the occurrence frequency of security vulnerability time is reduced effectively, and the repair time of vulnerability is shortened.

Funder

Natural Science Foundation of Ningxia Province of China

Scientific Research Project for introducted talents of North Minzu University

Publisher

Public Library of Science (PLoS)

Reference35 articles.

1. Convolution neural network application for first-break picking for land seismic data;G. N. Loginov;Geophys. Prospect.,2022

2. New approach for threat classification and security risk estimations based on security event management;C. S. José;Future Gener. Comput. Syst.,2020

3. Vulnerability prediction for secure healthcare supply chain service delivery;S. Islam;Integr. Comput-Aided. Engineer.,2022

4. Network vulnerability parameter and results on two surfaces;W. Gao;Int. J. Intell. Syst.,2021

5. Construction of information network vulnerability threat assessment model for CPS risk assessment;J. Xiong;Comput. Commun.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3