WilsonGenAI a deep learning approach to classify pathogenic variants in Wilson Disease

Author:

Vatsyayan AasthaORCID,Kumar Mukesh,Saikia Bhaskar JyotiORCID,Scaria Vinod,B. K. BinukumarORCID

Abstract

Background Advances in Next Generation Sequencing have made rapid variant discovery and detection widely accessible. To facilitate a better understanding of the nature of these variants, American College of Medical Genetics and Genomics and the Association of Molecular Pathologists (ACMG-AMP) have issued a set of guidelines for variant classification. However, given the vast number of variants associated with any disorder, it is impossible to manually apply these guidelines to all known variants. Machine learning methodologies offer a rapid way to classify large numbers of variants, as well as variants of uncertain significance as either pathogenic or benign. Here we classify ATP7B genetic variants by employing ML and AI algorithms trained on our well-annotated WilsonGen dataset. Methods We have trained and validated two algorithms: TabNet and XGBoost on a high-confidence dataset of manually annotated, ACMG & AMP classified variants of the ATP7B gene associated with Wilson’s Disease. Results Using an independent validation dataset of ACMG & AMP classified variants, as well as a patient set of functionally validated variants, we showed how both algorithms perform and can be used to classify large numbers of variants in clinical as well as research settings. Conclusion We have created a ready to deploy tool, that can classify variants linked with Wilson’s disease as pathogenic or benign, which can be utilized by both clinicians and researchers to better understand the disease through the nature of genetic variants associated with it.

Funder

Council of Scientific and Industrial Research

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3