Starvation-induced changes in the proteome and transcriptome of the salivary glands of leech (Hirudo nipponia)

Author:

Cai Meixiang,Shen Hongying,Xing Yueting,Wang Weimin,Guan Feng,Luo YuanyuanORCID

Abstract

Hirudo nipponia is an important medicinal animal in China. Its salivary gland secretions contain a variety of protein bioactive substances. Investigations of its salivary glands are of great significance in the study of the medicinal value and mechanism of leech secretions. Illumina RNA-Seq technology was used to perform transcriptome sequencing of salivary gland tissue of H. nipponia under starvation (D30) and fed (D0) states. A total of 2,650 differentially expressed genes (DEGs) were screened. Using the label-free protein quantification technique and bioinformatics analysis, the expression of differentially expressed proteins (DEPs) in the salivary gland tissue of H. nipponia was compared. A total of 2,021 proteins were identified, among which 181 proteins were differentially expressed between the starvation and fed states, with 72 significantly upregulated and 109 significantly downregulated. The salivary glands of H. nipponia synthesized protein-based active substances after 30 days of starvation and adapted to the starvation environment by weakening respiratory activity and reducing metabolic activity to reduce energy expenditure. Energy was produced by glycolysis and the tricarboxylic acid cycle for the synthesis of substances such as antibiotics. This study combined transcriptome and proteome sequencing data to provide a data reference for an in-depth study of the regulatory mechanism of salivary gland secretions of H. nipponia under starvation stress by analyzing DEGs and DEPs.

Funder

China Jiliang University Science and Technology Cooperation Project

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3