Evolutionary Digital Twin-Oriented Complex Networked Systems driven by node features and the mutation of feature preferences

Author:

Wen JiaqiORCID,Gabrys Bogdan,Musial Katarzyna

Abstract

Accurate modelling of complex social systems, where people interact with each other and those interactions change over time, has been a research challenge for many years. This study proposes an evolutionary Digital Twin-Oriented Complex Networked System (DT-CNS) framework that considers heterogeneous node features and changeable connection preferences. We create heterogeneous preference mutation mechanisms to characterise nodes’ adaptive decisions on preference mutation in response to interaction patterns and epidemic risks. In this space, we use nodes’ interaction utilities to characterise the positive feedback from interactions and negative impact of epidemic risks. We also introduce social capital constraint to harness the density of social connections better. The nodes’ heterogeneous preference mutation styles include the (i)inactive style that keeps initial social preferences, (ii) ignorant style that randomly mutates preferences, (iii) egocentric style that optimises individual interaction utility, (iv) cooperative style that optimises the total interaction utilities by group decisions and (v) collaborative style that further allows the cooperative nodes to transfer social capital. Our simulation experiments on evolutionary DT-CNSs reveal that heterogeneous preference mutation styles lead to various interaction and infection patterns. The results also show that (i) increasing social capital enables higher interactions but higher infection risks and uncertainty in decision-making; (ii) group decisions outperform individual decisions by eliminating the unawareness of the decisions of other nodes; (iii) the collaborative nodes under a strict social capital limit can promote interactions, reduce infection risks and achieve higher overall interaction utilities.

Funder

Australian Research Council

Publisher

Public Library of Science (PLoS)

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3