Sputum production and salivary microbiome in COVID-19 patients reveals oral-lung axis

Author:

Lu Korina Yun-FanORCID,Alqaderi HendORCID,Bin Hasan SaadounORCID,Alhazmi Hesham,Alghounaim Mohammad,Devarajan SriramanORCID,Freire MarceloORCID,Altabtbaei KhaledORCID

Abstract

SARS-CoV-2, a severe respiratory disease primarily targeting the lungs, was the leading cause of death worldwide during the pandemic. Understanding the interplay between the oral microbiome and inflammatory cytokines during acute infection is crucial for elucidating host immune responses. This study aimed to explore the relationship between the oral microbiome and cytokines in COVID-19 patients, particularly those with and without sputum production. Saliva and blood samples from 50 COVID-19 patients were subjected to 16S ribosomal RNA gene sequencing for oral microbiome analysis, and 65 saliva and serum cytokines were assessed using Luminex multiplex analysis. The Mann-Whitney test was used to compare cytokine levels between individuals with and without sputum production. Logistic regression machine learning models were employed to evaluate the predictive capability of oral microbiome, salivary, and blood biomarkers for sputum production. Significant differences were observed in the membership (Jaccard dissimilarity: p = 0.016) and abundance (PhILR dissimilarity: p = 0.048; metagenomeSeq) of salivary microbial communities between patients with and without sputum production. Seven bacterial genera, including Prevotella, Streptococcus, Actinomyces, Atopobium, Filifactor, Leptotrichia, and Selenomonas, were more prevalent in patients with sputum production (p<0.05, Fisher’s exact test). Nine genera, including Prevotella, Megasphaera, Stomatobaculum, Selenomonas, Leptotrichia, Veillonella, Actinomyces, Atopobium, and Corynebacteria, were significantly more abundant in the sputum-producing group, while Lachnoanaerobaculum was more prevalent in the non-sputum-producing group (p<0.05, ANCOM-BC). Positive correlations were found between salivary IFN-gamma and Eotaxin2/CCL24 with sputum production, while negative correlations were noted with serum MCP3/CCL7, MIG/CXCL9, IL1 beta, and SCF (p<0.05, Mann-Whitney test). The machine learning model using only oral bacteria input outperformed the model that included all data: blood and saliva biomarkers, as well as clinical and demographic variables, in predicting sputum production in COVID-19 subjects. The performance metrics were as follows, comparing the model with only bacteria input versus the model with all input variables: precision (95% vs. 75%), recall (100% vs. 50%), F1-score (98% vs. 60%), and accuracy (82% vs. 66%).

Funder

J. Craig Venter Institute

Dasman Diabetes Institute

L'Oreal USA

Publisher

Public Library of Science (PLoS)

Reference31 articles.

1. The effects of the COVID-19 pandemic on community respiratory virus activity;EJ Chow;Nat Rev Microbiol,2023

2. Gut microbiome, Vitamin D, ACE2 interactions are critical factors in immune-senescence and inflammaging: key for vaccine response and severity of COVID-19 infection;S. Shenoy;Inflammation Research,2021

3. Severe acute respiratory syndrome coronavirus 2 causes lung inflammation and injury;LL Wang;Clinical Microbiology and Infection,2022

4. Oral dysbiosis and its linkage with SARS-CoV-2 infection;A Gupta;Microbiological Research,2022

5. DADA2: High-resolution sample inference from Illumina amplicon data;BJ Callahan;Nature Methods,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3